<img alt="" src="https://secure.bass2poll.com/217461.png" style="display:none;">
Filter By Topic

March 21, 2022

Longevity of a Fire Suppression System

Fire suppression systems can be a necessary investment, both big and small. It’s natural that you want to get your money’s worth. When choosing a system or systems for your organization, it’s important to take into account the type of fire suppressant that is suitable for the application rather than choosing just based on the lifespan of the solution.

Read More

March 18, 2022

How To Prevent Electrical Fires In The Workplace

According to the Nonresidential Building Report by FEMA, between the years 2014 and 2016, an estimated 100,300 commercial fires were reported to US fire departments each year. For each year, these commercial fires caused an estimated 90 deaths, 1,350 injuries, and $2.4 billion in property losses. Eight percent of these commercial fires were caused by electrical malfunctions—that is roughly 8,000 electrical fires.

Read More

March 11, 2022

What Do You Use on an Electrical Fire?

An electrical fire is one that starts due to an electrical failure or malfunction. While these incidents generate flames and heat like any other fire, it’s important to know you can’t use water to put out these flames. Using water while the power is still on can cause you to be electrocuted. And even when the power is off, water may damage the wiring, electronics, or machinery that was the source of the fire.

Read More

March 9, 2022

CNC Machine Fire Protection Basics

The manufacturing industry relies on computer numerical control (CNC) machines. CNC machinery achieves a level of consistent, improved efficiency and accuracy that manual processes are unable to match through pre-programmed computer software. The software directs the movements of factory machinery and tools.

Read More

March 3, 2022

Taking Fire Risks Assessments Seriously in the Global Wind Industry

Fire safety should be a top priority for all wind farm operators. The industry’s journey towards truly comprehensive protection against fire shouldn’t begin at the finish line, leaving firefighters and staff to deal with the consequences when fires break out. Our latest report, “How to Evaluate Fire Risk,” shows why performing an effective fire risk assessment (FRA) is crucial, and how to best execute it. 

Read More

February 28, 2022

What are the Four Components of the Fire Tetrahedron?

Whether it occurs in the workplace, home, or elsewhere, it is difficult to overstate the unique and serious dangers fire poses to people, assets, equipment, and physical structures. A burning fire is a fascinating chemical chain reaction, and extinguishing a fire is a matter of disrupting that chain reaction. The better you understand how a fire starts—including the basic science of what components are required for it to ignite and burn—you’ll be better prepared when you need to extinguish a fire.

Read More

February 25, 2022

Understanding the AIM Act

The American Innovation and Manufacturing (AIM) Act was passed by Congress and signed into law in December 2020. The main goal of the AIM Act is to phasedown the usage of hydrofluorocarbons (HFCs) in various industries to combat the environmental impacts of HFCs and pave the way for new innovations. Since there is so much discussed in this new law, we have compiled a brief AIM act summary to give you a better understanding of why the AIM Act was created, what is included in the AIM Act, and how these new regulations affect the fire suppression industry.

Read More

February 21, 2022

Risks When Increasing the Size of Wind Turbines

Wind turbines have seen a steady increase in size since the early 2000s, with both the height of the tower and the length of the blades growing to generate more energy. Wind turbines are typically measured by their “hub height,” which refers to the distance from the ground to the middle of the turbine’s rotor. The average hub height for utility-scale, land-based turbines increased by 59% between 1998 and 2020 – bringing it to 90 meters (295 feet), roughly the same size as the Statue of Liberty. The hub height of offshore turbines is projected to increase even further. In 2016, they had an average hub height of 100 meters (330 feet) and are set to increase to 150 meters (500 feet) by 2035.

Read More

January 14, 2022

8 Stakeholders to Share the Results of Your Fire Risk Assessment

Thoroughly evaluating fire risk through a comprehensive assessment of a wind project is one thing, but using it effectively is another. Once a fire risk assessment (FRA) has been conducted, it’s important to consider how to share the assessment with the range of stakeholders that are certain to benefit from being aware of its contents. In our latest report, ‘How to Evaluate Fire Risk,’ we identify eight stakeholder groups with whom you should share your FRA to effectively reduce the risk of fire.

Read More

January 4, 2022

The Process of Repairs after a Wind Turbine Fire

Wind turbine fires don’t just burn infrastructure; they burn time and money. Incidents can result in several hours of downtime across the entire wind farm and put the affected turbine out of commission for over a year. In addition to missed-out megawatts, the resulting cost can shoot beyond $9 million as turbines increase in size and complexity. The process of repairs is lengthy, expensive, likely dangerous, and ultimately avoidable. Fire suppression systems, which act at the first sign of fire, stifle the flames before they can cause real harm to equipment, reputations, lives, and the bottom line.

Read More

November 30, 2021

Six Tips for an Effective Fire Risk Assessment

Wind turbine fires can be catastrophic. Not only the asset itself but also to the individuals and the surrounding environment. For wind farm owners seeking to safeguard their assets from fire risk, undertaking an in-depth fire risk assessment (FRA) is vital. Our latest report, ‘How to Evaluate Fire Risk at Wind Farms,’ highlights the importance of FRA’s and advises the best methods for conducting them.

Read More

November 16, 2021

Rising to the Challenges of Offshore and Nearshore Platforms

By 2030, 205GW of new offshore wind capacity is expected to be added globally, according to the Global Wind Energy Council (GWEC). Though this growth is essential for the energy transition, it presents new and heightened challenges to the industry. From getting the energy to shore, the sea-bound commute for operations and maintenance (O&M) teams, or preventing and rapidly responding to a turbine fire in order to reduce the financial, environmental, and reputational impacts, the offshore wind industry has a new set of challenges that it must rise to.

Read More